Plenary Speakers


Besides the student presentations, we are delighted to have the following distinguished speakers to deliver plenary talks at YMC:


Tuesday August 15th, 5-6pm at EA 160

Alejandra Alvarado (Eastern Illinois University)

Title: The Collatz Conjecture over the Gaussian Integers


We introduce the Collatz conjecture, as well as some elementary properties. In addition, we present some results from a summer REU where we investigated a Collatz-type function over the Gaussian and Eisenstein integers.  


Video in the YMC youtube channel 







Wednesday August 16, 9:30-10:30am at EA160

Loredana Lanzani (Syracuse University and University of Bologna) 

Title: Practical Uses of Complex Analysis

Abstract: The notion of conformal mapping is of fundamental importance in complex analysis. Conformal maps are used by mathematicians, physicists and engineers to change regions with complicated shapes into much simpler ones, and to do so in a way that preserves shape on a small scale (that is, when viewed up close). This makes it possible to ``transpose’’ a problem that was formulated for the complicated-looking region into another, related problem for the simpler region (where it can be easily solved) -- then one uses conformal mapping to ``move’’  the solution of the problem over the simpler region, back to a solution of the original problem (over the complicated region). The beauty of conformal mapping is that its governing principle is based on a very simple idea that is easy to explain and to understand (much like the statement of Fermat's celebrated last theorem). In the first part of this talk I will introduce the notion of conformal mapping and will briefly go over its basic properties and some of its history (including a historical mystery going back to Galileo Galilei). I will then describe some of the many real-life applications of conformal maps, including: cartography; airplane wing design (transonic flow); art (in particular, the so-called ``Droste effect’’ in the work of M. C. Escher).  Time permitting, I will conclude by highlighting recent work by McArthur fellow L. Mahadevan  that uses the related notion of quasi-conformal mapping to link D'Arcy Thompson's  iconic work On Shape and Growth  (published in 1917) with modern morphometric analysis (a discipline in biology that studies, among other things, how living organisms evolve over time).

No previous knowledge of complex analysis is needed to enjoy this talk.

Video in the YMC Youtube Channel


Thursday August 17, 9:30-10:30am at EA160

Carmen Rovi (Loyola University)

Title: Topology meets Physics: Scissors Congruences and TQFTs. 

Abstract: Topology is sometimes referred to as ”rubber-sheet geometry”, and like geometry, it is concerned with the study of spaces. Among the most exciting spaces are "manifolds". Manifolds are sets of points locally modeled on Euclidean space. In this talk, we will explore the notion of cutting and pasting of manifolds. It turns out that these cut-and-paste operations determine interesting algebraic structures, which have strong connections to Topological Quantum Field Theories.

Video in the YMC Youtube Channel